Skip to main content
Version: LOC v0.10 (legacy)

Create a Data-Driven Microservice with Database

Learning Objective
  • To create a microservice consisted of two data processes.
  • To create a database configuration and read/write the database in logic.

LOC data processes - after linked to at least one API routes - can serve as RESTful-like microservices. In this tutorial, we'll see how to create a simple logging microservice which can read and write a database table.

The "microservice" we'll create should be able to do the following things:

  1. Accepts a GET request to query and return logs from database
  2. Accepts a POST request with JSON payload to add logs into database
  3. The two actions share the same HTTP endpoint, for example, /api/db-tutorial/v1/logs.
info

In this post we'll use a Microsoft SQL Server database deployed on Amazon AWS. The SQL statements in this tutorial are hence designed for SQL Server only and need to be modified for other types of databases.

Currently LOC supports the following types of databases:

  • MySQL
  • PostgreSQL
  • MS SQL Server
  • Oracle Database

Database Table Schema

For this tutorial, we'll create a table Log with a simple schema as below:

FieldType
IDINT IDENTITY NOT NULL
MessageText
TimestampDATETIME

The ID field is defined as auto increment (IDENTITY; equivalent to AUTO_INCREMENT in other SQL variations).

MS-SQL Statements for Create and Drop Table

Be noted that the statement would differ on different databases. The name dbo and and command GO are required for MS SQL Server.

Create table

CREATE TABLE dbo.Log (
ID INT IDENTITY NOT NULL,
Message TEXT,
Timestamp DATETIME
);
GO

Delete all rows in table

Does not reset the auto increment number of ID

DELETE FROM dbo.Log;
GO

Drop (remove) dable

DROP TABLE dbo.Log;
GO

Create a Database Agent Configuration

As the way we've setup the HTTP agent configuration in another tutorial, go to Administration/Agent Configuration and add a database configuration under one of the folders:

agent-configuration-9
info

Modify the database type, host path, port and login information according to your database.

Since our MS SQL Server is for testing purpose only, the Trust Certificate is set to True.

RESTful Actions, API Routes and Data Processes

For the sake of demonstration, our "microservice" supports only two actions:

ActionHTTP Method/API Route
POST (insert) logsPOST /api/db-tutorial/v1/logs
GET (query) logs; default latest 1000 messagesGET /api/db-tutorial/v1/logs?limit=n

Each action is mapped to its own API route and data process. We'll take a look of these two data processes and their logic.


Log Service POST: POST Log Messages

Input Data

The service accepts a payload which may include one or more log messages:

[
{
"Message": "Life, Universe and Everything"
},
{
"Message": "42"
},
{
"Message": "Don't Panic"
}
]

Since ID is auto increment and Timestamp is generated at the time when the service process the messages, we only need to provide messages.

In order to keep the demonstration simple, the POST service will not return anything except the "OK" or "Error" status.

SQL Statement

The insert SQL script as prepared statement would be like this:

INSERT INTO dbo.Log
(Message, Timestamp)
VALUES
(@P1, @P2),
(@P3, @P4),
(@P5, @P6),
...;
GO
note

The @P1, @P2... are placeholders for MS SQL Server. In MySQL it would be ? and in PostgreSQL it would be $1, $2...

Each set of values is correspond to the message and the timestamp (ISO 8601 string).

Logic Design

LogicNamePurposeDB Config Ref
Generic logic #1Payload JSON Parser (source)Parse payload to JSON object
Generic logic #2Log Service POST LogicRead parsed payload and generate SQL statements/parameters
Generic logic #3Database Query (source)Query databasecomx
Aggregator logicDatabase AggregatorFinalise service result

Code for two of the logic (generic #1 and #3) can be found in the Logic Module Library (the database query logic handles both select and action queries).

note

The Database Query logic accepts the SQL statements and parameters from another logic, in this case namely log-service-post-logic.

Aanother two built specifically for the service:

log-service-post-logic.js
import { LoggingAgent, SessionStorageAgent } from "@fstnetwork/loc-logic-sdk";

export async function run(ctx) {
// read parsed JSON payload
const parsed = await SessionStorageAgent.get("parsed");

// log payload
LoggingAgent.info({
parsed: parsed,
});

if (!Array.isArray(parsed)) throw new Error("payload has to be an array");

// generate sql object for select/insert query
let values = [];
let params = [];
let params_id = 1;

// generating SQL value placeholders and parameter array
parsed.forEach((msg) => {
if ("Message" in msg || "message" in msg) {
values.push(`((@P${params_id}), (@P${params_id + 1}))`);
const new_msg = msg.Message ? msg.Message : msg?.message;
const new_dt = new Date().toISOString();
params.push(new_msg);
params.push(new_dt);
params_id += 2;
}
});

if (!values) throw new Error("no messages to insert");

const sql = {
configName: "comx",
statement: `INSERT INTO dbo.Log (Message, Timestamp) VALUES ${values.join(
", ",
)};`,
params: params,
};

// log sql
LoggingAgent.info({
sql: sql,
});

// write sql into session storage
await SessionStorageAgent.putJson("sql", sql);
}

export async function handleError(ctx, error) {
LoggingAgent.error({
error: true,
errorMessage: error.message,
stack: error.stack,
taskId: ctx.task.taskKey,
});
}

Log Service Get: GET Log Messages

Planned Output Data

The GET service should return a task result like this:

{
"status": "ok",
"taskId": {
"executionId": "...",
"taskId": "..."
},
"data": [
{
"ID": 3,
"Message": "Don't Panic",
"Timestamp": "2023-05-24T04:07:36.686666666Z"
},
{
"ID": 2,
"Message": "42",
"Timestamp": "2023-05-24T04:07:36.686666666Z"
},
{
"ID": 1,
"Message": "Life, Universe and Everything",
"Timestamp": "2023-05-24T04:07:36.686666666Z"
}
]
}

SQL Statement

The select SQL script as prepared statement would be like this:

SELECT TOP (@P1) *
FROM dbo.Log
ORDER BY
Timestamp DESC,
ID DESC;
GO

The TOP clause is equivalent to LIMIT at the end of other SQL variations.

The @P1 parameter will be the QueryString parameter limit from the GET request. If not provided, the service will use the default value of 1000.

Logic Design

LogicNamePurposeDB Config Ref
Generic logic #1QueryString Parser (source)Parse QueryString to object
Generic logic #2Log Service GET LogicRead parsed QueryString and generate SQL statements/parameters
Generic logic #3Database Query (source)Query database and return resultscomx
Aggregator logicDatabase Aggregator (see Log Service POST)Finalise service result

Like the first data process, code for two of the logic (generic #1 and #3) can be found in the Logic Module Library. This means the two data processes actually share 50% of the code with reusable logic modules.

Other than using a QueryString parser this time, the second logic is different as well:

log-service-get-logic.js
import { LoggingAgent, SessionStorageAgent } from "@fstnetwork/loc-logic-sdk";

export async function run(ctx) {
// read parsed querystring
const params = await SessionStorageAgent.get("params");

// log params
LoggingAgent.info({
params: params,
});

// get limit
let limit = 1000; // default
if ("limit" in params) {
try {
limit = Number(params.limit);
} catch (e) {
// skip
}
}

// generate sql object for select/insert query
const sql = {
configName: "comx",
statement:
"SELECT TOP (@P1) * FROM dbo.Log ORDER BY Timestamp DESC, ID DESC;",
params: [limit], // query 1000 rows by default
};

// log sql
LoggingAgent.info({
sql: sql,
});

// write sql into session storage
await SessionStorageAgent.putJson("sql", sql);
}

export async function handleError(ctx, error) {
LoggingAgent.error({
error: true,
errorMessage: error.message,
stack: error.stack,
taskId: ctx.task.taskKey,
});
}

Adding Database Configuration Reference

While adding the Database Query logic to both data processes, you'll need to add a database confiuration reference, in this case named as comx:

agent-configuration-10

API Routes

Finally create API routes for both data processes:

HTTP MethodAPI Route URLRequest ModeResponse Content TypeLinked Data Process
POST/api/db-tutorial/v1/logsSyncJSONLog Service POST
GET/api/db-tutorial/v1/logsSyncAUTOLog Service GET

You can see that both API routes share the same path but accepts different HTTP methods, so that they will invoke different data processes that implements corresponding service logic.

Invoke the Service

After everything is in place, you would be able to invoke the service with either GET or POST requests:

db-service

Further Development

Adding More RESTful Actions

Although we only implemented two actions here, more can be applied with the same principle - for example, PATCH (update log messages) and DELETE (delete log messages) - with more API routes and data processes added.

Example payload and logic for UPDATE and DELETE services

Here we'll give you another two example code for PATCH and DELETE. Both data processes would share the same logic of the POST service except the second logic:

API Route

HTTP MethodAPI Route URLRequest ModeResponse Content TypeLinked Data Process
PATCH/api/db-tutorial/v1/logsSyncJSONLog Service PATCH

JSON payload

[
{
"id": "id of message 1",
"message": "new message 1"
},
{
"id": "id of message 2",
"message": "new message 2"
},
{
"id": "id of message 3",
"message": "new message 3"
}
]

SQL statement

UPDATE dbo.Log
SET
message = (
CASE id
WHEN @P1 THEN @P2
WHEN @P3 THEN @P4
...
ELSE message
END
);
GO

Logic

log-service-patch-logic.js
import { LoggingAgent, SessionStorageAgent } from "@fstnetwork/loc-logic-sdk";

export async function run(ctx) {
// read parsed JSON payload
const parsed = await SessionStorageAgent.get("parsed");

// log payload
LoggingAgent.info({
parsed: parsed,
});

if (!Array.isArray(parsed)) throw new Error("payload has to be an array");

// generate sql object for select/insert query
let cases = [];
let params = [];
let params_id = 1;

// generating SQL value placeholders and parameter array
parsed.forEach((update) => {
if (
("id" in update || "ID" in update) &&
("Message" in update || "message" in update)
) {
const id = update.id ? update.id : update?.ID;
const new_msg = update.Message ? update.Message : update?.message;
cases.push(`WHEN @P${params_id} THEN @P${params_id + 1}`);
params.push(id);
params.push(new_msg);
params_id += 2;
}
});

if (!cases) throw new Error("no messages to be updated");

const sql = {
configName: "comx",
statement: `UPDATE dbo.Log SET message = (CASE id ${cases.join(" ")} ELSE message END);`,
params: params,
};

// log sql
LoggingAgent.info({
sql: sql,
});

// write sql into session storage
await SessionStorageAgent.putJson("sql", sql);
}

export async function handleError(ctx, error) {
LoggingAgent.error({
error: true,
errorMessage: error.message,
stack: error.stack,
taskId: ctx.task.taskKey,
});
}

Recreate RESTful Responses

The execution result we had above includes the execution metadata, however you can omit these information by turning the API routes' encapsulation off.

For example, we can simply only return the queried database result:

const messages = db_resp?.rows || [];

ResultAgent.finalize(messages);

And the API route would return

API route result without task or execution metadata
[
{
"ID": 3,
"Message": "Don't Panic",
"Timestamp": "2023-05-24T04:07:36.686666666Z"
},
{
"ID": 2,
"Message": "42",
"Timestamp": "2023-05-24T04:07:36.686666666Z"
},
{
"ID": 1,
"Message": "Life, Universe and Everything",
"Timestamp": "2023-05-24T04:07:36.686666666Z"
}
]

When the API route's encapsulation is set to false, only the task results - or the object defined by ResultAgent.finalize() - would be returned. Which means you can have full control of the services response. This may come in handy if you wish to integrate LOC data processes with your legacy applications or other services.

Setting Proper HTTP Status Code

In our example above, in case of any unhandled error is thrown, the result agent in the aggregator logic will always return the HTTP status code 500 (Internal Server Error). In reality, a RESTful service may also return codes like:

  • 400 (Bad Request)
  • 401 (Unauthorized Error)
  • 403 (Forbidden)
  • 500 (Internal Server Error)

With proper design, it is entirely possible to match client or server errors to these codes. Combining with setting the API route encapsulation to false, you would be able to create true RESTful services - either new ones or migrated from legacy APIs without breaking integration interfaces.